# 激光写光电子学进展

研究论文

## 基于正交反射多次旋光效应的葡萄糖浓度传感研究

李栋字<sup>1,2\*</sup>,黄贞<sup>1,2</sup>,李超旋<sup>2</sup>,张正贺<sup>2</sup>,张婷婷<sup>2</sup>,徐兵<sup>2</sup>,金肖<sup>2</sup>,王邓<sup>1</sup>,刘旭萍<sup>1</sup>,李清华<sup>1</sup>,郑剑虹<sup>1</sup> <sup>1</sup>广东省特殊儿童发展与教育重点实验室,广东 湛江 524048; <sup>2</sup>岭南师范学院物理科学与技术学院,广东 湛江 524048

**摘要** 糖度检测在生物、医疗等领域具有关键作用。为了提高旋光法测量糖溶液浓度的分辨率,本文提出利用正交反射 镜消除偏振光被金属平面镜反射后的消旋光现象,建立了参考臂和测量臂信号的相位差与溶液浓度之间的函数关系,并 研究了正交反射多次旋光效应。在不增加样品长度的前提下,通过多次旋光使分辨率倍增。以葡萄糖溶液为例,四次旋 光的实验结果表明:在0~0.4690 g/mL范围内,浓度测量分辨率为8×10<sup>-6</sup> g/mL,最大测量相对误差小于0.54%。正交 反射多次旋光检测技术可以为血糖与自闭症发病机理研究提供实时在线血糖检测。

关键词 光谱学;旋光法;正交反射;多次旋光;葡萄糖浓度 中图分类号 TH741 **文献标志码** A

#### DOI: 10.3788/LOP202259.2130001

## Glucose Concentration Sensing Based on Orthogonal Reflection Multiple Polarization Rotation Effect

Li Dongyu<sup>1,2\*</sup>, Huang Zhen<sup>1,2</sup>, Li Chaoxuan<sup>2</sup>, Zhang Zhenghe<sup>2</sup>, Zhang Tingting<sup>2</sup>, Xu Bing<sup>2</sup>, Jin Xiao<sup>2</sup>, Wang Deng<sup>1</sup>, Liu Xuping<sup>1</sup>, Li Qinghua<sup>1</sup>, Zheng Jianhong<sup>1</sup>

 $^1 Guang dong \ Key \ Laboratory \ of \ Development \ and \ Education \ for \ Special \ Needs \ Children,$ 

Zhanjiang 524048, Guangdong, China;

<sup>2</sup>School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, Guangdong, China

**Abstract** Glucose concentration measurement is crucial in various fields, including biology and medicine. This study proposes an orthogonal mirror to eliminate the 180° flipping of the polarization that generally occurs following single reflections from a metallic mirror to enhance the resolution of the polarimetry for measuring glucose concentration. The relationship between the solution concentration and the phase difference of reference light and measurement light is established. Furthermore, the effect of multiple polarization rotation based on the orthogonal mirror is explored. Multiple polarization rotation increases the glucose concentration measurement resolution without increasing the sample length. Taking glucose solution as an example, the experimental results of four rotations demonstrate that the concentration measurement resolution is  $8 \times 10^{-6}$  g/mL in the range of 0-0.4690 g/mL with a maximum relative error of less than 0.54%. The proposed approach can be used for online and real-time glucose concentration detection for research on glucose abnormalities in the pathogenesis of autism spectrum disorders.

Key words spectroscopy; polarimetry; orthogonal reflection; multiple polarization rotation; glucose concentration

1引言

糖度检测是食品分析技术的重要部分,糖度是果 实最主要的内部品质之一<sup>[1-2]</sup>。而且人体血糖含量的 检测对糖尿病的治疗和预防具有关键性的作用<sup>[3-9]</sup>。 特别是孕妇体内和宫内高血糖增加了新生儿患自闭症的风险<sup>[10]</sup>,研究表明,新生儿低血糖也会使新生儿患自闭症风险增加三倍<sup>[11]</sup>。维持整个孕期血糖控制以及针对新生儿低血糖的筛查对降低自闭症患病率风险具有重要作用。糖类物质具有旋光特征,因此旋光法以其

收稿日期: 2022-07-18; 修回日期: 2022-08-05; 录用日期: 2022-08-19

基金项目:广东省自然科学基金(2022A1515012448)、广东省普通高校重点科研平台和项目(2020ZDZX2055)、广东省普通高校人工智能和服务乡村振兴重点领域专项(2019KZDZX2008)、湛江市科技计划项目(2020A03003, 2021A05042)、岭南师范学院燕岭优秀青年教师培养计划资助项目(YL20200102)、广东省特殊儿童发展与教育重点实验室开放基金项目(TJ202001)

通信作者: \*nanorainbows@163.com

#### 研究论文

快速、非接触、干扰小等特点被广泛应用于糖度检测。 当一束线偏振光照射到葡萄糖溶液时,入射光的偏振 方向会沿传播方向发生旋转,称为旋光现象[12]。透射 光的偏振方向与入射时的方向形成了一定角度,即为 旋光角。旋光角与糖浓度相关,为了提高糖度测量的 分辨率,最直接的方法是增加样品长度。但该方法限 制了其在微流体、微量样品等方面的应用,特别是通过 眼前房水间接测量血糖浓度。为此,Xu等<sup>[13]</sup>利用光栅 将偏振旋转传递给直线运动的光斑,通过线阵图像传 感器定位光斑位移来检测旋光角,该方法具有无机械 旋转装置,但可测量最小旋光角仅为30′。Ma等<sup>[14]</sup>采 用像素化偏振相机和 Stokes 参数提取旋光角, 分辨率 达到6×10-6°,然而该技术需要进行复杂的图像处理。 Bornhop 和 Hankins<sup>[15]</sup>使用来自微流体通道的背向反 射条纹图样, Rajan和Ghosh<sup>[16]</sup>利用棱镜阵列测量来自 两个圆偏振光束的折射角之间的差异,在不增加光程 的情况下将灵敏度提高到mM范围。最近,本课题组 结合电机调制检偏器,通过双光路同步检测将糖度变 化引起的旋光角变化转化为两路调制信号的相位差变 化,浓度测量分辨率约为0.0256%[17]。但是,上述几 种方法测量灵敏度的提高受到样品长度的限制。许婷 等[18]利用法拉第旋光效应,通过增大磁感应强度增大 旋光角,提高糖度测量灵敏度。然而该方法需要将样 品放置在磁场中,增大了仪器的体积和测量的复杂性。 Xu等<sup>[19]</sup>将葡萄糖特殊氧化前后的旋光角变化与微弱 检测相结合,获得了约2.71 mg/L的测量分辨率。然 而该方法需要对葡萄糖进行预处理,采用实时闭环的 双波长偏振系统并结合光谱域和时域低相干干涉法, 因而具有较高的灵敏度[20-22],可应用于确定血糖浓度, 但需要太多的光学设备,系统过于复杂。外差式旋光 仪<sup>[23]</sup>和基于内反射的旋光仪<sup>[24]</sup>结构紧凑且简单,但是 它们的分辨率低至10<sup>-2</sup>(°)/mm。在不增加样品长度 和仪器体积的前提下,通过多次反射实现光程倍增是 最直接的提高测量分辨率的方法,然而偏振光在金属 平面镜反射后发生偏振180°翻转的消旋光效应,限制 了多次反射在旋光仪中的应用。为此,本文利用正交 反射镜,在不增加样品长度的前提下,分析了线偏振光 偏振方位角与正交多次反射次数之间的函数关系,建 立了参考臂和测量臂信号的相位差与溶液浓度之间的 函数关系,并研究了正交反射多次旋光仪,实现了高精 度偏振旋光角检测并应用于葡萄糖溶液浓度测量,从 而提高了旋光法测量糖度的分辨率。

2 基本原理

## 2.1 线偏振光被正交反射镜反射时的偏振方位角 分析

为了使光往返经过溶液而不产生消旋光效应,本 文设计了镜面相互垂直且交线垂直于入射面的正交反 射镜结构,如图1所示。入射光被金属反射镜反射时

#### 第 59 卷 第 21 期/2022 年 11 月/激光与光电子学进展





经过的介质分别为空气-玻璃-铝膜-玻璃-空气。由于 光在空气-玻璃界面的反射较玻璃-铝膜界面的反射率 低一个数量级,因此忽略空气-玻璃界面的反射光,主 要考虑玻璃-铝膜界面的反射光。设入射线偏振光的 偏振方位角为 \u03c6,将电矢量分解平行于垂直入射面的 p 分量和 s 分量。使 p 分量、s 分量和波矢 k 构成右手系, 图 2 中所有分量方向仅规定各个右手系的正方向,不 代表某电矢量的实际物理过程。如图 2 所示, E<sub>p</sub>、R<sub>p</sub>和 D<sub>p</sub>为入射光、反射光和折射光电矢量的平行分量, E<sub>s</sub>、 R<sub>i</sub>和 D<sub>s</sub>为入射光、反射光和折射光电矢量的垂直分 量。根据菲涅耳公式可得:

$$\frac{R_s}{E_s} = -\frac{\sin(i_1 - i_2)}{\sin(i_1 + i_2)},$$
(1)

$$\frac{R_{\rho}}{E_{\rho}} = \frac{\tan(i_1 - i_2)}{\tan(i_1 + i_2)},$$
(2)

$$\frac{D_s}{E_c} = \frac{2\sin i_2 \cos i_1}{\sin (i_1 + i_2)},\tag{3}$$

$$\frac{D_{p}}{E_{p}} = \frac{2\sin i_{2}\cos i_{1}}{\sin (i_{1} + i_{2})\cos (i_{1} - i_{2})^{\circ}}$$
(4)



- 图 2 偏振分量示意图。(a)入射光、折射光和反射光; (b)入射光在入射面处的偏振分量
- Fig. 2 Schematic of polarization components. (a) Incident light, refracted light, and reflected light; (b) polarization components of incident light at the incident plane

对于线偏振光, $E_x$ , $R_x$ 和 $\varphi$ 的关系表示为 $E_y$ = $E\sin\varphi$ 和 $E_y$ = $E\cos\varphi$ 。则入射光从空气进入玻璃的折射光线

### 研究论文

的偏振方位角满足:

$$\tan\varphi_{01} = \frac{D_s}{D_p} = \cos(i_1 - i_2) \tan\varphi_{\circ}$$
 (5)

被金属表面反射时,反射光的偏振方位角满足 下式,

 $\tan \varphi_{11} = P \exp(-i\Delta) \tan \varphi_{01} \approx -P \tan \varphi_{01}$ , (6) 式中: $P = r_s/r_p$ , $r_s \pi r_p$ 为垂直分量和平行分量的反射系 数绝对值,由于所选择的反射镜并不是理想镀铝反射 镜,取P = 0.93; $\Delta = \phi_s - \phi_p$ , $\phi_s \pi \phi_p$ 分别为垂直分量和 平行分量的相位变化。一般地,线偏振光经过铝膜反 射时, $\Delta = 0^{[25-28]}$ 。

接着,光从玻璃折射入空气,出射光的偏振方位角满足:

$$\tan \varphi_{12} = \frac{D_s}{D_p} = \cos(i_2 - i_1) \tan \varphi_{110}$$
(7)

令
$$B = -P\cos^2(i_2 - i_1)$$
,则由式(5)~(7)可得:  
 $\varphi_{12} = \operatorname{atan}(B\tan\varphi)_{\circ}$  (8)

由此可得,偏振光经过溶液n次后,出射光的偏振 方位角满足下式,

$$\varphi_n = \operatorname{atan} \left( B^2 \tan \varphi_{n-1} \right) + \beta_s, \tag{9}$$

$$\varphi_1 = \varphi_0 + \beta_s, \qquad (10)$$

式中:φ。为线偏振光进入样品之前的偏振方位角;β,为

第 59 卷 第 21 期/2022 年 11 月/激光与光电子学进展

线偏振光经过样品一次所引起的旋光角;φ<sub>1</sub>为线偏振 光第一次经过样品后的偏振方位角。

最后出射光被平面镜1反射到检偏器上,此时反 射光的偏振方位满足:

$$\varphi_{np} = \operatorname{atan}\left\{\operatorname{Btan}\left\{\operatorname{atan}\left[B^{2}\operatorname{tan}\left(\varphi_{n-1}\right)\right] + \beta_{s}\right\}\right\}_{\circ}$$
 (11)

#### 2.2 正交反射多次旋光的葡萄糖溶液浓度测量原理

结合上述分析,基于正交反射镜的多次旋光葡萄 糖溶液浓度测量原理图如图3所示,线偏振光经分光 镜分为a和b两束光,a光直接经检偏器后由光电传感 器(光电池1)检测其光强I<sub>a</sub>,为参考臂信号。利用正 交反射镜使b光多次经过样品后,再经检偏器由光电 传感器(光电池2)检测其光强I<sub>b</sub>,为测量臂信号。设检 偏器旋转频率为f,则根据马吕斯定律,I<sub>a</sub>和I<sub>b</sub>分别表 示为

$$I_{a} = E_{a}^{2} \cos^{2}(\varphi_{0p} + 2\pi ft) = \frac{E_{a}^{2}}{2} \cos(2\varphi_{0p} + 4\pi ft) + \frac{E_{a}^{2}}{2},$$
(12)

$$I_{b} = E_{b}^{2} \cos^{2} \left( \varphi_{np} + 2\pi ft \right) = \frac{E_{b}^{2}}{2} \cos \left( 2\varphi_{np} + 4\pi ft \right) + \frac{E_{b}^{2}}{2},$$
(13)

式中: *φ*<sup>0</sup> 为 a 路光照射到检偏器时的偏振方位角, 当光路确定后, 为一常数。



图 3 正交反射多次旋光糖度测量原理示意图

Fig. 3 Principle diagram of orthogonal reflection multiple polarization for glucose concentration measurement

则光电传感器获得的两路信号的相位差为

$$\psi_n = 2 \left( \varphi_{0p} - \varphi_{np} \right)_{\circ} \tag{14}$$

以四次旋光为例(n=4,n为旋光次数),令 $\varphi_0=0$ 。 当入射角 $i_1=45^\circ$ ,空气、玻璃和铝膜折射率分别为 1.0、1.5和1.44(1+3.63j)时<sup>[28]</sup>,研究参考臂和测量臂 两路信号的相位差 $\varphi_n$ 随一次旋光角 $\beta_i$ 的变化关系。当  $\varphi_n > \pi$ 时,需要对测量的相位进行解卷处理。如图4所 示,相位差 $\varphi_n$ 随一次旋光角 $\beta_i$ 单调递增,则有

$$\psi_n = 2n\beta_s + \psi_0, \qquad (15)$$

式中: $\phi_0$ 为两路信号的初始相位差,当光路固定时,为 一常数。

对于具有旋光性的溶液(如葡萄糖溶液),当其他 实验条件不变时,线偏振光经过样品一次产生的旋光 角 $\beta$ ,正比于光在溶液中所经过路程的长度*L*和旋光性 溶质的浓度*C*,即 $\beta$ ,= $\alpha LC$ 。其中, $\alpha$ 为比旋光率,当温 度与入射光波长不变时,为一常数。因此,光电传感器 获得的两路信号的相位差为

$$\psi_n = 2n\alpha LC + \psi_{0\circ} \tag{16}$$

令A=2aL,当样品长度L保持不变时,A为一常

#### 研究论文



图 4 参考臂和测量臂信号的相位差 $\phi_n$ 随一次旋光角 $\beta_s$ 的变化 关系( $\phi_0$ =0)

- Fig. 4 Relationship between phase difference  $\phi_n$  of reference arm and measurement arm signal with the primary rotation angle  $\beta_i$
- 数,则两路信号的相位差为

$$\psi_n = nAC + A_0, \qquad (17)$$

#### 第 59 卷 第 21 期/2022 年 11 月/激光与光电子学进展

式中:A。为常数。

因此可以利用式(17)实现n次旋下的溶液浓度的测量。

## 3 实验结果与讨论

实验装置如图 5 所示,选择半导体激光笔(功率小 于 1 mW,波长为 650 nm)作为光源,由于半导体激光 器出射光为椭圆偏振光,因此在其前方放置一起偏器, 以保证入射光为线偏振光。分光镜用于将入射光分束 为 a、b 两路光,其中 a 路光被平面镜 2 和平面镜 3 反射 后直接照射到检偏器,b 两路经过正交反射镜和样品 后被平面镜 1 反射照射到检偏器。检偏器由直流电机 带动以恒定速度旋转。光电池 1 和光电池 2 分别采集 a、b 两路光的光强信号,并利用 NI-USB6009数据采集 卡(DAQ)采集后由计算机处理。实验时样品长度为 0.092 m,环境温度为 25 ℃。



图5 正交反射多次旋光糖度测量装置实物图



#### 3.1 溶液制备

样品规格如下:本实验的样品为葡萄糖溶液,溶质为"一家亲"葡萄糖粉(一水葡萄糖),溶剂为纯净水,配制质量浓度分别为0.0000、0.0509、0.1038、0.1594、0.2159、0.2754、0.3374、0.4018、0.4690 g/mL的葡萄糖溶液。

#### 3.2 四次旋光实验结果与讨论

1) 参数标定

不同标准浓度下测量得到的相位差 $\varphi_n$ ,如表1所示。利用最小二乘法线性拟合得到相位差 $\varphi_n$ 与参考浓度*C*的函数关系如图6所示。可得四次旋光时,相位差 $\varphi_n$ 与溶液浓度*C*的函数关系为

$$\varphi_n = 251.95C + 15.077$$
。 (18)  
由式(18)可得,待测量糖溶液浓度与两路信号的

表1 不同浓度对应的相位差 $\phi_n$ Table 1 Phase difference  $\phi_n$  corresponding to different

| $C/(g \cdot mL^{-1})$ | $\psi_1 /(\degree)$ | $\psi_4 /(\degree)$ |
|-----------------------|---------------------|---------------------|
| 0.0000                | 25.8814             | 15.0903             |
| 0.1038                | 29.3788             | 41.5116             |
| 0.2159                | 36.1355             | 68.3534             |
| 0.3374                | 44.7721             | 99.7545             |
| 0.4018                | 49.5739             | 116.5419            |

相位差关系为

$$C = (\psi_n - 15.077) / 251.95_{\circ} \tag{19}$$

#### 2) 糖溶液浓度测量

根据上述标定结果,利用式(19)对质量浓度分别为0.0509、0.1594、0.2757、0.3374、0.4690g/mL的糖

#### 第 59 卷 第 21 期/2022 年 11 月/激光与光电子学进展



图6 相位差 $\phi_n$ 与参考溶液浓度C的线性拟合曲线 Fig. 6 Linear fitting curves between phase difference  $\psi_n$  and solution concentration C

溶液进行检测,测量结果如表2所示。在低糖度段(如 0.0509 g/mL), 一次旋光的测量相对误差约为 11.4263%,四次旋光的测量相对误差约为0.3929%, 因此在低糖度段测量相对误差明显减小。在0~ 0.4690 g/mL范围内,四次旋光的最大相对误差小于 0.54%。由图6可知,一次旋光的比例系数A=67.5。 四次旋光的比例系数A=251.95,是一次旋光的3.73 倍,测量灵敏度得到显著提高。

根据式(19)可知,设定直流电机转速为10r/min、

每通道采样率 30 kSa/s,则相位差测量分辨率为  $0.002^{\circ}$ ,对应的浓度测量分辨率为 $8 \times 10^{-6}$  g/mL。四次 旋光与一次旋光对比实验结果表明:在不增加样品长度 的前提下,通过正交反射镜结构,消除了偏振光被金属 平面镜反射后的消旋光现象,从而可以通过增加偏振光 经过样品溶液的次数提高溶液浓度的测量分辨率。浓 度测量分辨率为 $8 \times 10^{-6}$  g/mL(4.44×10<sup>-2</sup> mmol/L), 表明在接近人体生理血糖的样品中可以很好地检测葡 萄糖,因此所提出的传感器具有较高的可行性。另一 方面,所提出的正交多次旋光糖度测量传感器的高灵 敏度和较大线性范围将适用于研究其他化学反应和容 易发生旋光变化的分子间相互作用,例如蛋白质、核 酸、氨基酸和多糖。

Chen 等<sup>[29]</sup>使用共径外差激光干涉光学传感器测 量糖度,在40~500 mg/dl范围内达到了1.41 mg/dl的 测量分辨率。与之对比,该方法需要设计专门的传感 探头,本文方法光路更简单,操作更便捷。Xu等<sup>[19]</sup>提 出光学弱测量传感器和葡萄糖特异性检测葡萄糖的方 法,相比四次旋光法,虽然其测量分辨率增大约3倍, 但是不需要对样品进行预处理,可实现实时在线检测。 而且进一步增加旋光次数、选择更高采样率进行信号 采集、更低的电机转速可以非常便捷地提高测量系统 的浓度测量分辨率。

| Table 2Relative errors of the glucose concentration measurement |                                                         |                              |                                                           |                             |  |
|-----------------------------------------------------------------|---------------------------------------------------------|------------------------------|-----------------------------------------------------------|-----------------------------|--|
| Reference concentration<br>$C_{r_1}/(g \cdot mL^{-1})$          | Measurement concentration<br>$C_{m1}/(g \cdot mL^{-1})$ | Relative error $E_{m1} / \%$ | Measurement concentration<br>$C_{m4} / (g \cdot mL^{-1})$ | Relative error $E_{m4}$ / % |  |
| 0.0509                                                          | 0.0567                                                  | 11.4263                      | 0.0511                                                    | 0.3929                      |  |
| 0.1594                                                          | 0.1523                                                  | 4.4029                       | 0.1598                                                    | 0.2946                      |  |
| 0.2754                                                          | 0.2810                                                  | 2.0334                       | 0.2740                                                    | 0.5315                      |  |
| 0.3374                                                          | 0.3365                                                  | 0.4149                       | 0.3361                                                    | 0.3828                      |  |
| 0.4690                                                          | 0.4688                                                  | 2.0895                       | 0.4714                                                    | 0.5204                      |  |

表2 葡萄糖溶液浓度测量的相对误差

#### 4 结 论

为了提高旋光法测量溶液浓度的分辨率,本文利 用正交反射镜消除了偏振光被金属平面镜反射后的 消旋光现象。在不增加样品长度的前提下,分析了线 偏振光偏振方位角与正交多次反射次数之间的函数 关系,建立了参考臂和测量臂信号的相位差与溶液浓 度之间的函数关系,并研究了正交反射多次旋光仪。 以四次旋光葡萄糖溶液浓度测量为例,实验结果表 明:在 0~0.4690 g/mL 范围内,浓度测量分辨率为 8×10<sup>-6</sup> g/mL,最大测量相对误差小于0.54%。基于 正交反射的多次旋光检测技术具有测量分辨率高、结 构简单等特点,可实现实时在线的糖溶液浓度检测,有 望为宫内高血糖或新生儿低血糖与自闭症发病机理研 究提供可靠的血糖浓度检测装置。

#### 文 献 差

- [1] Wu B F, Xu H T, Shi Y F, et al. Microelectrode glucose biosensor based on nanoporous platinum/ graphene oxide nanostructure for rapid glucose detection of tomato and cucumber fruits[J]. Food Quality and Safety, 2022, 6: fyab030.
- [2] Yeganeh-Zare S, Farhadi K, Amiri S. Rapid detection of apple juice concentrate adulteration with date concentrate, fructose and glucose syrup using HPLC-RID incorporated with chemometric tools[J]. Food Chemistry, 2022, 370: 131015.
- [3] Bolla A S, Priefer R. Blood glucose monitoring- an overview of current and future non-invasive devices[J]. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2020, 14(5): 739-751.
- [4] 郭帅, 苏杭, 黄星灿, 等. 光学无创血糖浓度检测方法 的研究进展[J]. 中国光学, 2019, 12(6): 1235-1248.

#### 第 59 卷 第 21 期/2022 年 11 月/激光与光电子学进展

#### 研究论文

Guo S, Su H, Huang X C, et al. Research progress in optical methods for noninvasive blood glucose detection [J]. Chinese Optics, 2019, 12(6): 1235-1248.

- [5] Cescon I, Stefanel A. Polarimetry measurement in a physics lab for food science undergraduate students[J]. The Physics Teacher, 2022, 60(2): 144-148.
- [6] Villena Gonzales W, Mobashsher A T, Abbosh A. The progress of glucose monitoring-a review of invasive to minimally and non-invasive techniques, devices and sensors[J]. Sensors, 2019, 19(4): 800.
- [7] 张洋,何腾超,刘林,等.基于离散三维荧光光谱的糖 尿病识别方法研究[J].光学学报,2022,42(1):0117002.
  Zhang Y, He T C, Liu L, et al. Diabetes recognition method based on discrete three-dimensional fluorescence spectrum[J]. Acta Optica Sinica, 2022, 42(1):0117002.
- [8] 叶思放,方云团.基于Parity-Time对称耦合微腔的血糖 传感器[J].中国激光, 2022, 49(3): 135-142.
  YeSF, FangYT. Blood glucose sensor based on paritytime symmetry coupled cavities[J]. Chinese Journal of Lasers, 2022, 49(3): 135-142.
- [9] 刘静,房晓峰,袁振,等.有机纳米光学传感器及血糖 定量成像研究[J].中国激光,2022,49(15):1507403.
  Liu J, Fang X F, Yuan Z, et al. Quantitative imaging of blood glucose concentration by organic nanoparticle transducer[J]. Chinese Journal of Lasers, 2022, 49(15): 1507403.
- [10] Hoirisch-Clapauch S, Nardi A E. Autism spectrum disorders: let's talk about glucose? [J]. Translational Psychiatry, 2019, 9: 51.
- [11] Buchmayer S, Johansson S, Johansson A, et al. Can association between preterm birth and autism be explained by maternal or neonatal morbidity? [J]. Pediatrics, 2009, 124(5): e817-e825.
- [12] Bungay A R, Svirko Y P, Zheludev N I. Equivalency of the Casimir and the Landau-Lifshitz approaches to continuous-media electrodynamics and optical activity on reflection[J]. Physical Review B, 1993, 47(18): 11730-11735.
- [13] Xu Q F, Cai X W, Tang Y Q, et al. A grating to transfer polarization rotation to straight line movementdesigns and applications[J]. IEEE Sensors Journal, 2019, 19(22): 10419-10424.
- [14] Ma X, Dong F L, Zhang Z G, et al. Pixelatedpolarization-camera-based polarimetry system for wide real-time optical rotation measurement[J]. Sensors and Actuators B: Chemical, 2019, 283: 857-864.
- [15] Bornhop D J, Hankins J. Polarimetry in capillary dimensions[J]. Analytical Chemistry, 1996, 68(10): 1677-1684.
- [16] Rajan R P, Ghosh A. Enhancement of circular differential deflection of light in an optically active medium[J]. Optics Letters, 2012, 37(7): 1232-1234.
- [17] 黄贞,梁恩恩,林雪桂,等.基于液体旋光效应的葡萄糖 浓度测量[J].激光与光电子学进展,2017,54(6):061203.
   Huang Z, Liang E E, Lin X G, et al. Glucose concentration

measurement based on liquid optical rotation effect[J]. Laser & Optoelectronics Progress, 2017, 54(6): 061203.

- [18] 许婷,彭玉峰,韩雪云.基于法拉第旋光效应的葡萄糖 浓度传感研究[J].光电子·激光,2021,32(2):173-180.
  Xu T, Peng Y F, Han X Y. Research on glucose concentration sensing based on Faraday rotation effect[J]. Journal of Optoelectronics·Laser, 2021, 32(2):173-180.
- [19] Xu Y, Shi L X, Guan T, et al. Specific detection of glucose by an optical weak measurement sensor[J]. Biomedical Optics Express, 2021, 12(8): 5128-5138.
- [20] Malik B H, Pirnstill C W, Coté G L. Dual-wavelength polarimetric glucose sensing in the presence of birefringence and motion artifact using anterior chamber of the eye phantoms[J]. Journal of Biomedical Optics, 2013, 18(1): 017007.
- [21] 余振芳,邱琪,张天航,等.双调制多波长旋光法检测 人工前房内葡萄糖的浓度[J].光学学报,2016,36(11): 1117003.
  Yu Z F, Qiu Q, Zhang T H, et al. Dual-modulation multi-wavelength polarimetry for monitoring glucose concentration in anterior chamber of eye phantoms[J]. Acta Optica Sinica, 2016, 36(11): 1117003.
- [22] Liu C J, Li T Q, Akkin T. Low-coherence interferometry for phase-sensitive measurement of optical rotation[J]. Applied Optics, 2018, 57(20): 5893-5898.
- [23] Lo Y L, Liao C C, Li C Y, et al. Measuring the optical rotation angle and circular dichroism of anisotropic optical media using a heterodyne polarimeter[J]. Journal of Lightwave Technology, 2013, 31(8): 1255-1262.
- [24] de Oliveira A R, Domenegueti J F M, Zilio S C. Measuring optical activity with the internal reflection in a glass prism[J]. Applied Optics, 2018, 57(4): 937-941.
- [25] 徐林华,李相银,徐福龙.线偏振光反射时的偏振态分析
  [J].重庆工学院学报(自然科学版), 2007, 21(7): 70-73.
  Xu L H, Li X Y, Xu F L. Polarization analysis on reflection of linearly polarized light[J]. Journal of Chongqing Institute of Technology (Natural Science Edition), 2007, 21(7): 70-73.
- [26] 陈立刚,洪津,乔延利,等.非理想正交反射镜消偏性 能的模拟研究[J].应用光学,2008,29(4):633-638.
  Chen L G, Hong J, Qiao Y L, et al. Simulation study on depolarization for imperfect orthogonal mirrors[J]. Journal of Applied Optics, 2008, 29(4):633-638.
- [27] Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light [M]. Oxford: Pergamon Press, 1999.
- [28] 邱成锋.金属反射镜的偏振特性及其正交反射消偏研究
   [D].合肥:中国科学院合肥物质科学研究院,2007:15-49.
   Qiu C F. Polarization characteristics of metal mirror and its orthogonal reflection depolarization[D]. Hefei: Hefei Institutes of Physical Science, Chinese Academy of Sciences, 2007:15-49.
- [29] Chen K H, Hsu C C, Su D C. Interferometric optical sensor for measuring glucose concentration[J]. Applied Optics, 2003, 42(28): 5774-5776.